วันนี้ผมมาทำหน้าที่นักคณิตศาสตร์แก้ปัญหาเรื่องความน่าจะเป็น ซึ่งเป็นเครื่องมือสำคัญมากในการติดสินใจต่าง ๆ ผมจะยกตัวอย่างสำคัญเรื่องการเล่นหวยหรือที่บางคนเรียกว่าล็อตเตอรี่ นักคณิตศาสตร์มีความลำบากใจมากในเรื่องนี้ เพราะในขณะที่ฝ่ายหนึ่งด่านักคณิศาสตร์
ความไม่บังเอิญเกี่ยวกับวันเกิด
 
โดย ผศ.ดร.วัชรินทร์ วิชิรมาลา
            วันนี้ผมมาทำหน้าที่นักคณิตศาสตร์แก้ปัญหาเรื่องความน่าจะเป็น   ซึ่งเป็นเครื่องมือสำคัญมากในการติดสินใจต่าง ๆ   ผมจะยกตัวอย่างสำคัญเรื่องการเล่นหวยหรือที่บางคนเรียกว่าล็อตเตอรี่   นักคณิตศาสตร์มีความลำบากใจมากในเรื่องนี้    เพราะในขณะที่ฝ่ายหนึ่งด่านักคณิตศาสตร์ว่าทำไมไม่เห็นเตือนสติชาวบ้านว่า  หวยเป็นสาเหตุหนึ่งที่ทำให้เกิดความยากจน   ฝ่ายที่ชื่นชอบการเล่นหวยก็ด่าว่าอย่ามาขัดขวางหนทางร่ำรวยของเขา
           เราลองมาดูการแทงเลขท้ายสองตัวดูนะครับ  มันออกได้ 100 แบบ คือ 00 01 02 …  ยัน 99  เวลามันออก 00  ชาวบ้านก็บ่นว่าเลยไม่สวย ใครจะแทงถูก   เวลามันออกซ้ำกับงวดที่เพิ่งออกไปไม่นาน  ชาวบ้านก็ด่าว่าแล้วยังงี้จะแทงถูกได้ไงวะ   เวลาแทงผิดไปนิดเดียวก็เจ็บใจและมีพลังแค้นเล่นงวดต่อ ๆ ไป   เราจะกลับมาวิเคราะห์เรื่องนี้ในตอนท้ายหลังจากดูเรื่องมหัศจรรย์เกี่ยวกับ  การตรงกันของวันเกิดนะครับ
           กิจกรรมที่เรามักทำร่วมกันในกลุ่มเพื่อนหรือญาติก็คือกินเลี้ยงวันเกิด   ใครเกิดใกล้ ๆ กัน ก็รวมมาเลี้ยงพร้อมกันจะได้ไม่ต้องจัดกันบ่อย ๆ   แต่มันจะน่าตื่นเต้นเป็นพิเศษหากมีเพื่อนเราเกิดวันเดียวกันหลาย ๆ คน   ยิ่งมากยิ่งฮา   เมื่อถึงวันเกิดก็มักจะมีกิจกรรมพิเศษ   ในขณะที่ส่วนใหญ่กินเลี้ยงหรือไปเที่ยว  อีกส่วนน้อยก็เลือกที่จะทำอะไรแปลก  ๆ ทั้งที่เปิดเผยได้และเปิดเผยไม่ได้
             ตอนเรียนหนังสือระดับประถมหรือมัธยมเราก็จะเคยเจอว่ามีเพื่อนในห้องเรามีวัน  เกิดตรงกัน ยิ่งมีจำนวนนักเรียนในห้องมาก  ก็จะยิ่งมีโอกาสที่จะมีสักอย่างน้อยสองคนที่วันเกิดตรงกัน   ถ้าจะให้แน่ใจได้ว่าจะมีคนเกิดตรงกันในห้องก็คงต้องให้มีนักเรียน 367 คน   พูดง่าย ๆ ว่าถ้าจะไม่ให้มีการซ้ำกันเลยก็จะต้องมีนักเรียนได้อย่างมาก 366  คน  ก่อนที่จะดูต่อไปผมขอให้เราพักไว้ก่อนว่า   ลองมาตอบคำถามง่าย ๆ  กันก่อน  ถ้าจะให้โอกาสการมีวันเกิดซ้ำกันเป็น 50% เราจะต้องมีคนกี่คนเอ่ย  100? 150? 183? 200?  คนสัก 50 คนจะมีโอกาสวันเกิดซ้ำกันมากแค่ไหน   จำคำเดาของตัวเองไว้นะครับ   เรากำลังจะไปคำนวณกันแล้วหละ
           เป้าหมายของเราก็คือดูว่าหากเรามีคน N คน เมื่อ N  เป็นจำนวนนับหรือจำนวนเต็มบวก    จะมีโอกาสแค่ไหนที่จะมีคนเกิดวันเดียวกันบ้าง  ก่อนอื่นเราต้องกล่าวถึง 2  หลักการต่อไปนี้
          หลักการที่ 1   โอกาสที่จะเกิดเหตุการณ์ ห  เท่ากับ  1- โอกาสที่จะไม่เกิดเหตุการณ์ ห   เท่ากับ  1- โอกาสที่จะเกิดเหตุการณ์ไม่ ห  เท่ากับ  1-  โอกาสที่เกิดเหตุการณ์ ห ไม่  เท่ากับ  1- โอกาสที่จะไม่เกิดเหตุการณ์ไม่ ห  ก็ใช่ไม่
          หลักการที่ 2 โอกาสที่จะเกิดเหตุการณ์ที่ 1 และ 2  ซึ่งเป็นอิสระต่อกันไม่เกี่ยวกันไม่มีผลต่อกัน  เท่ากับ   ผลคูณของโอกาสที่จะเกิดเหตุการณ์ที่ 1 และโอกาสที่จะเกิดเหตุการณ์ที่  2 เท่ากับ  โอกาสที่จะเกิดเหตุการณ์ที่ 2 บวกกันโอกาสที่จะเกิดเหตุการณ์ที่  1 ครั้ง
           ทีนี้ก็มาดูกันว่าคน N คน จะมีโอกาสเกิดไม่ตรงกันเลยเท่าใด   ขอตกลงก่อนว่าปีหนึ่งมีแค่ 365 วัน เพื่อความสะดวก เพราะวันที่ 29  กุมภาพันธ์มันมีน้อยกว่าวันอื่นมาก ๆ  เราเริ่มโดยแจกบัตรคิวให้ทุกคน   เรียกคนที่หนึ่งเข้ามา จับนั่งให้เรียบร้อยตามแบบฉบับไทย ๆ   เรียกคนที่สองมา โอกาสที่จะไม่เกิดตรงกับคนแรกคือ 364/365  เรียกคนที่สามมา  โอกาสที่คนที่สามจะเกิดไม่ตรงกับสองคนแรกคือ 363/365  เรียกคนที่สี่เข้ามา  โอกาสที่จะไม่เกิดตรงกับสามคนแรกคือ 362/365  ทำเช่นนี้ไปเรื่อย ๆ  ก็จะพบว่าโอกาสที่คนสุดท้ายหรือคนที่ N จะเกิดไม่ตรงกับ N-1 คนแรกคือ  (366-N)/365  ทำให้โอกาสที่จะไม่มีใครเกิดตรงกันเลยคือ 
                 
          ดังนั้นโอกาสที่จะมีคนเกิดตรงกันบ้างคือ 
 ทีนี้ก็มาดูกันว่าค่านี้มันจะสักเท่าไหร่กันเชียวในกรณีต่าง ๆ  เช่น ห้องเรียนเด็กชาย ก. มีทั้งหมด 38 คน  ก็จะมีโอกาส 
เฮ้ย!  ทำไมมันเยอะอย่างนี้วะ   พูดออกมาเลยครับ ไม่ต้องเกรงใจกัน   ค่ามันเยอะเกินคาดจริง ๆ   เราลองมาดูค่านี้ ณ N ต่าง ๆ กันดูนะครับ   เริ่มจาก 1 ถึง 100 
                                   
จะเห็นว่าแค่ 60 คน มันก็มีโอกาสเกือบ 100% แล้ว   ทีนี้เราก็มาดูภาพขยายช่วงต้นและท้ายดังนี้
                                   
ก็จะเห็นว่า ถ้าจะให้มีโอกาส 50% ที่จะเกิดตรงกัน ก็ขอให้มีคนเพียง 23 คนก็พอ ซึ่งจะมีโอกาส 50.7%
                               
           ส่วนนี้ก็จะบอกว่า 47 คนจะมีโอกาส 95.48%  คือไม่ตรงกันเลยได้แค่ไม่ถึง 1 ใน 20  บ้าไปแล้ว
ตัวเองยอมรับมาเถอะว่ามันเกิดคาด
            ดังนั้นพนันได้เลยว่าในกลุ่มที่มีคนเกิน 50 คนนั้นจะมีคนเกิดตรงกัน  แทงหนึ่งจ่ายสิบได้เลย  เอ๊ะ!  ตรงลงผมเคยบอกว่าไม่ควรเล่นการพนันหรือเปล่าหว่า
           ถ้าแค่นี้ยังไม่สะใจพอก็มาหาโอกาสที่จะมีวัน วันที่และเดือนเกิดตรงกัน   ซึ่งมีตั้ง 7x365 = 2,555 แบบ  แต่ก็อีกนั่นแหละ โอกาสมันมากจริง ๆ  ที่ทำงานของผมมีอาจารย์ 60 ท่าน มีโอกาสเกิดวัน วันที่และเดือนตรงกันตั้ง  50.25% เชียวนะ
           ไหน ๆ ก็ไหน ๆ แล้ว  เรามาดูการเล่นหวยเลขท้ายสองตัวกันอย่างละเอียดดีกว่า    ด้วยหลักการเดียวกันเราก็จะสรุปได้ว่าในไม่กี่งวดก็จะมีการออกซ้ำกันได้    ดังนั้นก็ไม่ใช้การล็อคเลขตามข่าวลือแต่อย่างใด  (ประโยคนี้กองสลากกินแบ่งเป็นสปอนเซอร์)
            ผมจึงขอแนะนำว่าการเล่นหวยเลขท้ายสองสามตัวนั้นควรเล่นกันเองในครอบครัวหรือ  ถ้าเล่นบ่อยและหนักก็ควรเป็นเจ้ามือตัวเอง  ในระยะยาวก็จะมีโอกาสกำไร    แต่ผมก็ขอเตือนไว้ก่อนนะครับว่าเรื่องนี้มันเกี่ยวกับความน่าจะเป็น   ไม่ใช่สิ่งที่จะเป็น  ดังนั้นอาจมีบางบ้านที่ลองวิธีนี้ต้องบ้านแตกเพราะดันมีคนแทงถูกเยอะ ๆ  จนเงินส่วนกลางไม่พอจ่าย  อย่ามาโทษผมนะ
           ดังนั้นจึงไม่ใช่เรื่องบังเอิญเลยที่ห้องเรียนเล็ก ๆ  ที่ทำงานไม่ใหญ่ จะมีคนเกิดตรงกัน  ไม่เชื่อพนันกับผมได้
            ก็มาถึงช่วงของการบ้านนะครับ  สำหรับคนที่ชอบหาความน่าจะเป็น   เรื่องมีอยู่ว่าสมมุติว่าเรามีไพ่สองสำรับ สับแต่ละสำรับให้เละเลย    ด้วยมือนะครับไม่ใช่มีด   แล้วก็มาเปิดดูว่าใบแรกของแต่ละสำรับมันหน้าตรงกันไหม   ต้องทั้งเลขและดอกตรงกันนะ  ซึ่งก็มีโอกาสเพียง 1/52  หลังจากเอาโจ๊กเกอร์ออกไป   แล้วก็เปิดใบที่สองของแต่ละสำรับดูว่ามันหน้าตรงกันไหม ทำไปเรื่อย ๆ  จนหมด   ใน 52  คู่นั้นมันจะตรงกันได้บ้างหรือเปล่า  จะมีโอกาสตรงกันบ้างสักเท่าไรเชียว
            อีกคำถามก็เป็นเรื่องการพนันล้วน ๆ  ว่าเราควรมีหลักการอย่างไรในการแทงหวยเลขท้ายสองตัว หรือเล่นทายหัวก้อย   ลองใช้สิ่งที่เพิ่งได้อ่านประกอบการคิดดูนะครับ
            สุดท้ายผมก็ขอขอบคุณ อ.ดร.จิณดิษฐ์ ละออปักษิณ ที่คณะครุศาสตร์  จุฬาลงกรณ์มหาวิทยาลัยที่เล่าเรื่องน่าทึ่งพวกนี้ให้ผมและหลาย ๆ คนฟัง   มันน่าตื่นเต้นจนผมต้องมาเล่าต่อ  หวังว่าผู้อ่านจะรู้สึกสนุกกับคณิตศาสตร์  มากขึ้นนะครับ
ที่มา www.vcharkarn.com