การกระทำระหว่างเซต
การกระทำระหว่างเซต
ขอขอบคูณข้อมูลจาก https://www.kroobannok.com/618
โดย นายไสว นวลตรณี, นายศักดา บุญโต และนายสุพจน์ ไชยสังข์
การกระทำระหว่างเซต (Operation Between Sets)
ในเรื่องของจำนวน เราสามารถนำจำนวนมากระทำกันเพื่อให้เกิดเป็นจำนวนใหม่ได้ เช่น ถ้า x และ y เป็นจำนวนแล้ว x + y เป็นจำนวนใหม่ เรียกว่า ผลบวกของ x และ y การกระทำเกี่ยวกับจำนวนที่เราคุ้นเคยกัน ได้แก่ การบวก การคูณ การหารากที่สอง ฯลฯ ในเรื่องของเซตก็เช่นเดียวกัน เราสามารถนำเซตมา "กระทำกัน" เพื่อให้เกิดเป็นเซตใหม่ได้ด้วยวิธีการดังนี้
ยูเนียน (Union) ถ้าเราเอาสมาชิกทั้งหมดของเซต A และ B มารวมกันเข้าเป็นเซตเดียวกัน เซตใหม่นี้เรียกว่า ยูเนียนของเซต A และ B เขียนแทนด้วย A U B ใน A U B เราเขียนสมาชิกที่อยู่ทั้งใน A และ B เพียงครั้งเดียว ฉะนั้นยูเนียนของ เซต A และ B คือเซตที่ประกอบด้วยสมาชิกทั้งหลายที่อยู่ในเซต A หรือ B หรือทั้งสองเซต
อินเตอร์เซคชัน (Intersection) ถ้า เรานำสมาชิกที่ร่วมกันของเซต A และเซต B มารวมกันเข้าเป็นเซตใหม่ เซตนี้เรียกว่า อินเตอร์เซคชันของเซต A และเซต B เขียนแทนด้วย A B
A = { 1, 2, 3, 4, 5, 6 }
B = { 2, 4, 6, 8, 10, 12 }
A U B = { 1, 2, 3, 4, 5, 6, 8, 10, 12 }
A = { 1, 2, 3, 4, 5, 6 }
B = { 2, 4, 6, 8, 10, 12 }
A B = { 2, 4, 6 }
ผลต่าง (Difference) ผลต่างระหว่างเซต A กับเซต B คือ เซตที่ประกอบด้วยสมาชิกของเซต A ทั้งหลายซึ่งไม่อยู่ในเซต B เขียนแทนด้วย A-B เช่น ถ้าให้
A = { คุณพ่อ, คุณแม่, หนูหน่อย }
B = { คุณพ่อ, คุณแม่, น้อง }
จะได้ว่า
A-B = { หนูหน่อย }
B-A = { น้อง }
นักคณิตศาสตร์ได้นำความรู้เกี่ยวกับเซตไปใช้ในการอธิบายเรื่องราวทางคณิตศาสตร์แทบทุกสาขา
ปัญหาบางอย่าง ถ้าใช้เซตช่วยแก้ปัญหาแล้ว จะแก้ปัญหาได้รวดเร็วขึ้น ดังตัวอย่างต่อไปนี้
นักเรียนในห้องหนึ่งมี 50 คน ในจำนวนนี้เป็นนักเรียนชาย 25 คน เป็นนักเรียนต่างจังหวัด 15 คน เป็นนักเรียนชายต่างจังหวัด 8 คน อยากทราบว่ามีนักเรียนหญิงที่ไม่ได้มาจากต่างจังหวัดกี่คน
จะลองแก้ปัญหานี้โดยการทดลองแทนตัวเลขไปเรื่อยๆ ก็ย่อมทำได้ แต่ก็คงใช้เวลานานพอดู (ถ้าโชคไม่ดี) อย่างไรก็ตาม ถ้าใช้ความรู้เรื่องเซต แล้ว จะสามารถแก้ปัญหานี้ได้โดยง่าย ดังนี้
ให้ U เป็นเซตของนักเรียนทั้งหมดในห้อง
A เป็นเซตของนักเรียนชาย
B เป็นเซตของนักเรียนต่างจังหวัด
ขั้นแรกเขียนแผนภาพของเซตทั้ง 3
เนื่องจากมีนักเรียนชายต่างจังหวัด 8 คน แสดงว่าจำนวนสมาชิกของ A B เท่ากับ 8 เขียน 8 ลงในบริเวณ A B
เนื่องจากนักเรียนชายทั้งหมดมี 25 คน และนักเรียนชายที่มาจากต่างจังหวัดมี 8 คน ดังนั้นนักเรียนชายที่ไม่ได้มาจากต่างจังหวัดมี 25 - 8 = 17 คน
แสดงว่าจำนวนสมาชิกของ A - B เท่ากับ 17 เขียน 17 ลงในบริเวณ A - B
เนื่องจากนักเรียนต่างจังหวัดมี 15 คน ดังนั้นนักเรียนต่างจังหวัดที่ไม่ใช่ ชายมี 15 - 8 = 7 คน แสดงว่าจำนวนสมาชิกของ B - A เท่ากับ 7 เขียน 7ลงในบริเวณ B - A
ดังนั้นนักเรียนที่เป็นชาย หรือนักเรียนต่างจังหวัดมี 17 + 8 + 7 = 32 คน แสดงว่าจำนวนสมาชิกของ A U B เท่ากับ 32
เนื่องจากนักเรียนทั้งหมดมี 50 คน เป็นนักเรียนชาย หรือนักเรียนต่างจังหวัด 32 คน ดังนั้นนักเรียนหญิงที่ไม่ได้มาจากต่างจังหวัด เท่ากับจำนวนสมาชิกของ U - (A U B) ซึ่งมีจำนวนทั้งสิ้น 50 - 32 = 18 คน
ที่มาจาก : vcharkarn.com